学术报告

走向现代数学-系列学术报告(No.439)(鲁建 副教授)

报告题目:Uniqueness and nonuniqueness of solutions to the planar dual Minkowski problem

报 告 人:鲁建 副教授(华南师范大学)

报告时间:2021年6月23号 下午3点00分

报告地点:腾讯会议ID:357 105 468

摘要: The dual Minkowski problem is an important problem in the modern Brunn-Minkowski theory about convex geometry and has received great attention in recent years. It is equivalent to solving a class of Monge–Ampère type equations. We will mainly talk about our recent progress about the uniqueness and nonuniqueness of solutions to the dual Minkowski problem in the planar case, which is based on a joint work with YanNan Liu. If time permits, we will also discuss the uniqueness and nonuniqueness of solutions to the Lp dual Minkowski problem, which is a generalization of the dual Minkowski problem.

报告人简介:鲁建,2013年在清华大学获博士学位,现为华南师范大学副教授。研究方向主要为偏微分方程,特别是 Monge-Ampere 型方程及其在几何中的应用。在 Adv. Math.、J. Funct. Anal.、Trans. AMS、Calc. Var. PDE、Int. Math. Res. Not.、J. Diff. Equations 等数学期刊上发表 SCI收录论文十余篇。主持国家自然科学基金面上项目和粤港澳应用数学中心项目等多项课题。