pp. 31–38: Zengjian Lou

Div-curl type theorems on Lipschitz domains.
Membership and correspondence.
Applications for membership, notices of change of address or title or position, members’ subscriptions and correspondence related to accounts should be sent to the Treasurer. Correspondence about the distribution of the Society’s BULLETIN, GAZETTE, and JOURNALS, and orders for back numbers should be sent to the Treasurer. All other correspondence should be sent to the Secretary.

The Bulletin.
The Bulletin of the Australian Mathematical Society began publication in 1969. Normally two volumes of three numbers are published annually. The BULLETIN is published for the Australian Mathematical Society by the Australian Mathematical Publishing Association Inc.

ASSOCIATE EDITORS

Robert S. Anderssen B.D. Craven B.D. Jones M. Murray
R. Bartnik Brian A. Davey Owen D. Jones J.H. Rubinstein
Elizabeth J. Billington J.R. Giles G.I. Lehrer Jamie Simpson
G. Cairns J.A. Hempel K.L. McAvaney Brailey Sims
J. Clark B.D. Hughes A.G.R. McIntosh Ross Street
G.L. Cohen G. Ivanov Terry Mills R.P. Sullivan
N.S. Trudinger A.J. van der Poorten
INFORMATION FOR AUTHORS

The Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. The Editors receive more than three times as much material as can be published in the BULLETIN; many meritorious papers can, therefore, not be accepted. Authors are asked to avoid, as far as possible the use of mathematical symbols in the title. Manuscripts are accepted for review with the understanding that the same work is not concurrently submitted elsewhere.

To ensure speedy publication, editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. Papers are accepted only after a careful evaluation by the Editor and an Associate Editor or other expert in the field. As even minor revisions are generally not permitted, authors should read carefully all the details listed below. For a paper to be acceptable for publication, not only should it contain new and interesting results but also

(i) the exposition should be clear and attractive;
(ii) the manuscript should be in publishable form, without revision.

Authors should submit three clean, high quality copies to
The Editorial Office, Bulletin of the Australian Mathematical Society,
Department of Mathematics, The University of Queensland,
Queensland 4072, Australia.

Unless requested at the time, material submitted to the BULLETIN will usually not be returned.

EDITORIAL POLICY

1. References. Arrange references alphabetically (by surname of the first author) and cite them numerically in the text. Ensure the accuracy of the references: authors’ names should appear as in the work quoted. Include in the list of references only those works cited, and avoid citing works which are “in preparation” or “submitted”. Where the work cited is not readily accessible (for example, a preprint) a photocopy of the title page and relevant sections of the copy that you have used should be included with your submission.

2. Abstracts.
 1. Each paper must include an abstract of not more than 200 words, which should contain a brief but informative summary of the contents of the paper, but no inessential details.
 2. The abstract should be self-contained, but may refer to the title.
 3. Specific references (by number) to a section, proposition, equation or bibliographical item should be avoided.

3. Subject Classification. Authors should include in their papers one or more classification numbers, following the 2000 Mathematics Subject Classification. Details of this scheme can be found in each Annual Index of Mathematical Reviews or on the web at http://www.ams.org/msc.

4. Abstracts of Ph.D. Theses. The Bulletin endeavours to publish abstracts of all accepted Australasian Ph.D. theses in mathematics. One restriction, however, is that the abstract must be received by the Editor within 6 months of the degree being approved.

5. Electronic Manuscripts. The Bulletin is produced using \texttt{AMSTeX}. Authors who are able to do so are invited to prepare their manuscripts using \texttt{TeX}. (We accept Plain \texttt{TeX}, \texttt{AMSTeX} or \texttt{LaTeX}.) Hard copy only should be submitted for assessment, but if the paper is accepted the author will be asked to send the text on an IBM PC compatible diskette or via e-mail to ams@maths.uq.edu.au. [Typed manuscripts are, of course, still acceptable.]
A note on the lattice of density preserving maps
Sejal Shah and T.K. Das

A strong excision theorem for generalised Tate cohomology
N. Mramor Kosta

Linear geometries on the Moebius strip: a theorem of Skornyakov type
Rainer Löwen and Burkhard Polster

Div-curl type theorems on Lipschitz domains
Zengjian Lou

A nonlinear map for midpoint locally uniformly rotund renorming
S. Lajara and A.J. Pallarés

A remarkable continued fraction
David Angell and Michael D. Hirschhorn

A new variational method for the $p(x)$-Laplacian equation
Marek Galewski

Boundary unique continuation theorems under zero Neumann boundary conditions
Xiangxing Tao and Songyan Zhang

On the Ky Fan inequality and related inequalities II
Edward Neuman and Jósef Sándor

Finite presentability of some metabelian Hopf algebras
Dessislava H. Kochloukova

On the monotonicity properties of additive representation functions
Yong-Gao Chen, András Sárközy, Vera T. Sós and MinTang

Generation of diagonal acts of some semigroups of transformations and relations
Peter Gallagher and Nik Ruškuc

Subalgebras of free restricted Lie algebras
R.M. Bryant, L.G. Kovács and Ralph Stöhr

A multiple character sum evaluation
Dae San Kim

Implicit vector equilibrium problems via nonlinear scalarisation
Jun Li and Nan-Jing Huang

ABSTRACTS OF AUSTRALASIAN Ph.D. THeses

Numerical methods for quantitative finance
Jamie Alcock

Volume 72 Number 1 August 2005
DIV-CURL TYPE THEOREMS ON LIPSCHITZ DOMAINS

ZENGJIAN LOU

For Lipschitz domains of \(\mathbb{R}^n \) we prove div-curl type theorems, which are extensions to domains of the Div-Curl Theorem on \(\mathbb{R}^n \) by Coifman, Lions, Meyer and Semmes. Applying the div-curl type theorems we give decompositions of Hardy spaces on domains.

1. Introduction

In [4] two Hardy spaces are defined on domains \(\Omega \) of \(\mathbb{R}^n \), one which is reasonably speaking the largest, and the other which in a sense is the smallest. The largest, \(\mathcal{H}^1_r(\Omega) \), arises by restricting to \(\Omega \) arbitrary elements of \(\mathcal{H}^1(\mathbb{R}^n) \). The other, \(\mathcal{H}^1_z(\Omega) \), arises by restricting to \(\Omega \) elements of \(\mathcal{H}^1(\mathbb{R}^n) \) which are zero outside \(\bar{\Omega} \). Norms on these spaces are defined as following

\[
\| f \|_{\mathcal{H}^1_r(\Omega)} = \inf \| F \|_{\mathcal{H}^1(\mathbb{R}^n)},
\]

the infimum being taken over all functions \(F \in \mathcal{H}^1(\mathbb{R}^n) \) such that \(F|_{\Omega} = f \),

\[
\| f \|_{\mathcal{H}^1_z(\Omega)} = \| F \|_{\mathcal{H}^1(\mathbb{R}^n)},
\]

where \(F \) is the zero extension of \(f \) to \(\mathbb{R}^n \).

From [2], the dual of \(\mathcal{H}^1_z(\Omega) \) is \(\text{BMO}_r(\Omega) \), a space of locally integrable functions with

\[
\| f \|_{\text{BMO}_r(\Omega)} = \sup_{Q \subset \Omega} \left(\frac{1}{|Q|} \int_Q |f(x) - f_Q|^2 \, dx \right)^{1/2} < \infty,
\]

where \(f_Q = 1/|Q| \int_Q f(x) \, dx \), and the supremum is taken over all cubes \(Q \) in the domain \(\Omega \). The dual of \(\mathcal{H}^1_z(\Omega) \) is \(\text{BMO}_z(\Omega) \), the space of all functions in \(\text{BMO}(\mathbb{R}^n) \) supported in \(\bar{\Omega} \), equipped with the norm \(\| f \|_{\text{BMO}_z(\Omega)} = \| f \|_{\text{BMO}(\mathbb{R}^n)} \).

Received 24th January, 2005

This work is supported by NNSF of China (Grant No.10371069), NSF of Guangdong Province (Grant No.032038) and SRF for ROCS, State Education Ministry. This paper was done when the author visited the Centre for Mathematics and its Applications (CMA) of Mathematical Sciences Institute at the Australian National University. The author would like to thank Professor Alan McIntosh for helpful discussions and for supporting his visit to CMA in September of 2003. He also likes to thank CMA for hospitality during the visit.
Let Ω denote a Lipschitz domain — an assumption which is enough to ensure the existence of a bounded extension map from $\text{BMO}_r(\Omega)$ to $\text{BMO}(\mathbb{R}^n)$ ([6]). We use $H(\Omega)^n := H(\Omega, \mathbb{R}^n)$ to denote a space of functions $f : \Omega \to \mathbb{R}^n$ (when $n = 1$, write $H(\Omega)^1$ as $H(\Omega)$). For simplicity we introduce the following spaces

$$L^2_{\text{div}}(\Omega)^n = \left\{ f \in L^2(\Omega)^n : \text{div } f = 0, \ |f|_{L^2(\Omega)^n} \leq 1 \right\};$$

$$L^2_{\text{curl}}(\Omega)^n = \left\{ f \in L^2(\Omega)^n : \text{curl } f = 0, \ |f|_{L^2(\Omega)^n} \leq 1 \right\},$$

where ν denotes the outward unit normal vector. When $\Omega = \mathbb{R}^n$

$$L^2_{\text{div}}(\mathbb{R}^n)^n = \left\{ f \in L^2(\mathbb{R}^n)^n : \text{div } f = 0, \ |f|_{L^2(\mathbb{R}^n)^n} \leq 1 \right\};$$

$$L^2_{\text{curl}}(\mathbb{R}^n)^n = \left\{ f \in L^2(\mathbb{R}^n)^n : \text{curl } f = 0, \ |f|_{L^2(\mathbb{R}^n)^n} \leq 1 \right\}.$$

In [5, Theorems II.1 and III.2], among other results, Coifman, Lions, Meyer and Semmes established the following theorems.

Theorem CLMS1. Let $1 < p, q < \infty, 1/p + 1/q = 1, E \in L^p(\mathbb{R}^n)^n$, $\text{div } E = 0$, $F \in L^q(\mathbb{R}^n)^n$, $\text{curl } F = 0$. Then $E \cdot F \in \mathcal{H}^1(\mathbb{R}^n)$ and

$$\| E \cdot F \|_{\mathcal{H}^1(\mathbb{R}^n)} \leq C \| E \|_{L^p(\mathbb{R}^n)^n} \| F \|_{L^q(\mathbb{R}^n)^n}$$

for a constant C depending only on the dimension n.

Theorem CLMS2. For $b \in \text{BMO}(\mathbb{R}^n)$

$$||b||_{\text{BMO}(\mathbb{R}^n)} \approx \sup_{E,F} \int_{\mathbb{R}^n} b \cdot E \cdot F \, dx,$$

where the supremum is taken over all $E \in L^2(\mathbb{R}^n)^n$, $F \in L^2(\mathbb{R}^n)^n$ with $\text{div } E = 0$, $\text{curl } F = 0$ and $||E||_{L^2(\mathbb{R}^n)^n} \leq 1$, $||F||_{L^2(\mathbb{R}^n)^n} \leq 1$, and the implicit constants in (1.2) depend only on n.

A natural question to ask is: under what conditions on domains Ω does the equivalence (1.2) hold on Ω? As a main theorem of this paper, we solve this problem for Lipschitz domains in \mathbb{R}^n.

Theorem 1.1. Let Ω be a Lipschitz domain of \mathbb{R}^n.

(1) If $b \in \text{BMO}_r(\Omega)$, then

$$||b||_{\text{BMO}_r(\Omega)} \approx \sup_{e,f} \int_{\Omega} b \cdot e \cdot f \, dx,$$

the supremum being taken over all $e \in L^2_{\text{div}}(\Omega)^n$, $f \in L^2_{\text{curl}}(\Omega)^n$.

(2) If \(b \in \text{BMO}_z(\Omega) \), then

\[
\|b\|_{\text{BMO}_z(\Omega)} \approx \sup_{e,f} \int_{\Omega} b \cdot e \, dx,
\]

the supremum being taken over all \(e = E|_{\Omega}, f = F|_{\Omega} \), \(E \in L^2_{\text{div}}(\mathbb{R}^n)^n \), \(F \in L^2_{\text{curl}}(\mathbb{R}^n)^n \).

The implicit constants in (1.3) and (1.4) depend only on the domain \(\Omega \) and on the dimension \(n \).

Remark. Results for other BMO-type spaces, such as dual of divergence-free Hardy spaces, can be found in [8] and [9].

Corollary 1.2.

(1) A function \(b \in \text{BMO}_r(\Omega) \) if and only if there exists a constant \(C \) such that

\[
\int_{\Omega} b \cdot e \, dx \leq C \text{ for all } e \in L^2_{\text{div}}(\Omega)^n \text{ and } f \in L^2_{\text{curl}}(\Omega)^n.
\]

(2) A function \(b \in \text{BMO}_z(\Omega) \) if and only if there exists a constant \(C \) such that

\[
\int_{\Omega} b \cdot f \, dx \leq C \text{ for all } e = E|_{\Omega} \text{ and } f = F|_{\Omega} \text{ with } E \in L^2_{\text{div}}(\mathbb{R}^n)^n, \quad F \in L^2_{\text{curl}}(\mathbb{R}^n)^n.
\]

Here and afterwards, unless otherwise specified, \(C \) denotes a constant depending only on the domain \(\Omega \) and the dimension \(n \). Such \(C \) may differ at different occurrences.

Applying Theorem 1 we have the following theorem which gives decompositions of \(\mathcal{H}^1_z(\Omega) \) and \(\mathcal{H}^1_r(\Omega) \) into quantities of forms “\(e \cdot f \)”.

Theorem 1.3.

(1) Any function \(u \in \mathcal{H}^1_z(\Omega) \) can be written as

\[
u = \sum_{k=1}^{\infty} \lambda_k \ e_k \cdot f_k,
\]

where \(e_k \in L^2_{\text{div}}(\Omega)^n \), \(f_k \in L^2_{\text{curl}}(\Omega)^n \) and \(\sum_{k=1}^{\infty} |\lambda_k| < \infty \).

(2) Any function \(u \in \mathcal{H}^1_r(\Omega) \) can be written as

\[
u = \sum_{k=1}^{\infty} \lambda_k \ e_k \cdot f_k,
\]

where \(e_k = E_k|_{\Omega}, f_k = F_k|_{\Omega} \), \(E_k \in L^2_{\text{div}}(\mathbb{R}^n)^n \), \(F_k \in L^2_{\text{curl}}(\mathbb{R}^n)^n \) and \(\sum_{k=1}^{\infty} |\lambda_k| < \infty \).
2. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemmas.

Lemma 2.1. ([6, Theorem 1]) Let $b \in \text{BMO}_r(\Omega)$. Then there exists $B \in \text{BMO}(\mathbb{R}^n)$ such that

$$b = B|\Omega$$

and

(2.1) \[\|B\|_{\text{BMO}(\mathbb{R}^n)} \leq C \|b\|_{\text{BMO}_r(\Omega)}. \]

Lemma 2.2. ([7, Theorem 3.1]) Let b be a locally integrable function on Ω. Then

(2.2) \[\|b\|_{\text{BMO}_r(\Omega)} \approx \|b\|_{\text{BMO}^h(\Omega)}, \]

where

\[\|b\|_{\text{BMO}^h(\Omega)} = \sup_Q \left(\frac{1}{|Q|} \int_Q |b - b_Q|^2 \, dx \right)^{1/2}, \]

the supremum being taken over all cubes Q with $2Q \subset \Omega$, the implicit constants in (2.2) depend only on Ω and n.

Lemma 2.3. For $b \in L^2_{\text{loc}}(\Omega)$

(2.3) \[\|b\|_{\text{BMO}^h(\Omega)} \leq C \sup_{e,f} \int_{\Omega} b \, e \cdot \nu \, d\sigma, \]

the supremum being taken over all $e \in L^2_{\text{div}}(\Omega)^n$ and $f \in L^2_{\text{curl}}(\Omega)^n$.

The proof of Lemma 2.3 is given in the last section.

Proof of Theorem 1.1: (1) Let $B \in \text{BMO}(\mathbb{R}^n)$ be an extension of $b \in \text{BMO}_r(\Omega)$ such that $b = B|\Omega$ and (2.1) holds. For $e \in L^2_{\text{div}}(\Omega)^n$, $f \in L^2_{\text{curl}}(\Omega)^n$, define

\[E = \begin{cases} e & \text{in } \Omega; \\ 0 & \text{in } \mathbb{R}^n \setminus \Omega, \end{cases} \]

\[F = \begin{cases} f & \text{in } \Omega; \\ 0 & \text{in } \mathbb{R}^n \setminus \Omega. \end{cases} \]

Since $\text{div} \, e = 0$ on Ω and $e \cdot \nu|_{\partial \Omega} = 0$, it is easy to show that $\text{div} \, E = 0$ on \mathbb{R}^n. So $E \in L^2_{\text{div}}(\mathbb{R}^n)^n$. Similarly, $\text{curl} \, f = 0$ on Ω and $f \times \nu|_{\partial \Omega} = 0$ imply that $\text{curl} \, F = 0$.
on \(\mathbb{R}^n \). Therefore \(F \in L^2_{\text{curl}}(\mathbb{R}^n)^n \). By duality \(\mathcal{H}^1(\mathbb{R}^n)^* = \text{BMO}(\mathbb{R}^n) \), Lemma 2.1 and (1.1), we have

\[
\int_{\Omega} b \cdot f \, dx = \int_{\mathbb{R}^n} B \cdot E \cdot F \, dx \leq \| B \|_{\text{BMO}(\mathbb{R}^n)} \| E \cdot F \|_{\mathcal{H}^1(\mathbb{R}^n)} \\
\leq C \| b \|_{\text{BMO}(\Omega)} \| E \|_{L^2(\mathbb{R}^n)^n} \| F \|_{L^2(\mathbb{R}^n)^n} \\
= C \| b \|_{\text{BMO}(\Omega)} \| E \|_{L^2(\mathbb{R}^n)^n} \| f \|_{L^2(\mathbb{R}^n)^n} \leq C \| b \|_{\text{BMO}(\Omega)}.
\]

The proof of the reversed inequality in (1.3) follows from (2.2) and (2.3).

(2) Let \(b \in \text{BMO}_z(\Omega) \) and \(B \) be its zero extension to \(\mathbb{R}^n \). Then \(B \in \text{BMO}(\mathbb{R}^n) \) and \(\| B \|_{\text{BMO}(\mathbb{R}^n)} = \| b \|_{\text{BMO}_z(\Omega)} \). Using (1.1) again,

\[
\int_{\Omega} b \cdot f \, dx = \int_{\mathbb{R}^n} B \cdot E \cdot F \, dx \leq \| B \|_{\text{BMO}(\mathbb{R}^n)} \| E \cdot F \|_{\mathcal{H}^1(\mathbb{R}^n)} \\
\leq C \| b \|_{\text{BMO}_z(\Omega)} \| E \|_{L^2(\mathbb{R}^n)^n} \| F \|_{L^2(\mathbb{R}^n)^n} \\
\leq C \| b \|_{\text{BMO}_z(\Omega)}
\]

for all \(e = E|_{\Omega}, f = F|_{\Omega}, E \in L^2_{\text{div}}(\mathbb{R}^n)^n, F \in L^2_{\text{curl}}(\mathbb{R}^n)^n \).

For the converse, let \(b \in \text{BMO}_z(\Omega) \) and define \(B \) as above. Applying (1.2) yields

\[
\| b \|_{\text{BMO}_z(\Omega)} = \| B \|_{\text{BMO}(\mathbb{R}^n)} \leq C \sup_{E \in L^2_{\text{div}}, F \in L^2_{\text{curl}}} \int_{\mathbb{R}^n} B \cdot E \cdot F \, dx \\
= C \sup_{e = E|_{\Omega}, f = F|_{\Omega}, E \in L^2_{\text{div}}, F \in L^2_{\text{curl}}} \int_{\Omega} b \cdot f \, dx.
\]

Theorem 1.1 is proved.

3. Proof of Theorem 1.3

The proof of Theorem 1.3 relies on Theorem 1.1 and the following facts from functional analysis which can be found in [5, Lemmas III.1, III.2].

Lemma 3.1. Let \(V \) be a bounded subset of a normed vector space \(X \). We assume that \(\overline{V} \) (closure of \(V \) for the norm of \(X \)) contains the unit ball (centred at 0) of \(X \). Then, any \(x \) in that ball can be written as

\[
x = \sum_{j=0}^{\infty} \frac{1}{2^j} y_j,
\]

where \(y_j \in V \) for all \(j \geq 0 \).
Lemma 3.2. Let V be a bounded symmetric $(x \in V \Rightarrow -x \in V)$ subset of a normed vector space X. Then, the closed convex hull \overline{V} of V (in X) contains a ball centred at 0 if and only if, for any $l \in X^*$,

$$\|l\|_{X^*} \approx \sup_{x \in V} \langle l, x \rangle.$$

Proof of Theorem 1.3: (1) Let $X = \mathcal{H}_2^1(\Omega)$ and

$$V = \{ e \cdot f : e \in L^2_{\text{div}}(\Omega)^n, f \in L^2_{\text{curl}}(\Omega)^n \}.$$

It is easy to check that V is a bounded subset of X. In fact, for $e \in L^2_{\text{div}}(\Omega)^n$, $f \in L^2_{\text{curl}}(\Omega)^n$, let E and F be their zero extensions to \mathbb{R}^n respectively. Then $E \in L^2_{\text{div}}(\mathbb{R}^n)^n, F \in L^2_{\text{curl}}(\mathbb{R}^n)^n$. From Theorem CLMS1, $E \cdot F \in \mathcal{H}^1(\mathbb{R}^n)$ and

$$\|E \cdot F\|_{\mathcal{H}^1(\mathbb{R}^n)} \leq C \|E\|_{L^2(\mathbb{R}^n)^n} \|F\|_{L^2(\mathbb{R}^n)^n} \leq C.$$

Therefore $e \cdot f \in \mathcal{H}_2^1(\Omega)$ with $\|e \cdot f\|_{\mathcal{H}_2^1(\Omega)} \leq C$. Applying Theorem 1.1 (1) and Lemmas 3.1 and 3.2, we have the decomposition of Theorem 1.3 (1).

(2) Let $X = \mathcal{H}_1^1(\Omega)$ and

$$V = \{ e \cdot f : e = E|_{\Omega}, f = F|_{\Omega}, E \in L^2_{\text{div}}(\mathbb{R}^n)^n, F \in L^2_{\text{curl}}(\mathbb{R}^n)^n \}.$$

Similar to the case (1), we have $e \cdot f \in \mathcal{H}_1^1(\Omega)$ with

$$\|e \cdot f\|_{\mathcal{H}_1^1(\Omega)} = \inf_{e \cdot f = G|_{\Omega}, G \in \mathcal{H}_1^1(\mathbb{R}^n)} \|G\|_{\mathcal{H}_1^1(\mathbb{R}^n)} \leq \|E \cdot F\|_{\mathcal{H}_1^1(\mathbb{R}^n)} \leq C$$

for $e \cdot f \in V$. Using Theorem 1.1 (2) and those two lemmas again we finish the proof of Theorem 1.3.

\[\square\]

4. Proof of Lemma 2.3

To prove Lemma 2.3 we need the following result due to Nečas (see [10, Lemma 7.1, Chapter 3]). In Lemma 4.1, $W^{1,2}_0(\Omega)^n$ denotes the closure of $C_0^\infty(\Omega)^n$ in the Sobolev space $W^{1,2}(\Omega)^n$ and $\nabla \varphi = ((\partial \varphi_i)/(\partial x_j))_{n \times n}$ a $n \times n$ matrix (see [1] for Sobolev spaces).

Lemma 4.1. Let Ω be a Lipschitz domain in \mathbb{R}^n. If $f \in L^2(\Omega)$ has zero integral, then there exists $\varphi \in W^{1,2}_0(\Omega)^n$ such that

$$f = \text{div} \ \varphi$$

and

$$\|\nabla \varphi\|_{L^2(\Omega)^{n \times n}} \leq C \|f\|_{L^2(\Omega)}.$$

Corollary 4.2. Let Q be a cube in \mathbb{R}^n. If $f \in L^2(Q)$ has zero integral, then there exists $\varphi \in W^{1,2}_0(Q)^n$ such that $f = \text{div} \ \varphi$ and

$$\|\nabla \varphi\|_{L^2(Q)^{n \times n}} \leq C_0 \|f\|_{L^2(Q)}.$$
for a constant C_0 independent of Q.

Proof of Lemma 2.3: Suppose $b \in L^2_{\text{loc}}(\Omega)$. We shall show that for all cubes Q with $2Q \subset \Omega$ there exists $e \in L^2_{\text{div}}(\Omega)^n$ and $f \in L^2_{\text{curl}}(\Omega)^n$ such that

(4.1) \[\left(\frac{1}{|Q|} \int_Q |b - b_Q|^2 \, dx \right)^{1/2} \leq C \int_\Omega b \cdot e \, dx. \]

Let $h = b - b_Q$, then $h \in L^2(Q)$ with $\int_Q h \, dx = 0$. From Corollary 4, there exists $\varphi := (\varphi_1, \ldots, \varphi_n) \in W^{1,2}_0(Q)^n$ such that $h = \text{div} \varphi$ and

(4.2) \[\| \nabla \varphi \|_{L^2(Q)^n} \leq C_0 \| h \|_{L^2(Q)}, \]

where C_0 is independent of Q. So

\[\| h \|_{L^2(Q)}^2 = \int_Q h \sum_{i=1}^n \frac{\partial \varphi_i}{\partial x_i} \, dx \leq n \max_{1 \leq i \leq n} \left| \int_Q h \frac{\partial \varphi_i}{\partial x_i} \, dx \right| \]

(4.3) \[= n \left| \int_Q h \frac{\partial \varphi_{i_0}}{\partial x_{i_0}} \, dx \right| \]

for some choice of i_0 ($i_0 = 1, \ldots, n$). Assuming without loss of generality that $i_0 = 1$ in (4.3). To prove (4.1), it is sufficient to show that

(4.4) \[\left| \int_Q h \cdot \nabla \frac{1}{L^2(Q)} \frac{\partial \varphi_1}{\partial x_1} \, dx \right| \leq C |Q|^{1/2} \left| \int_\Omega b \cdot f \, dx \right|. \]

We next construct e and f. Define

\[f = \left(- \frac{\partial \varphi_1}{\partial x_i}, 0, \ldots, 0, \frac{\partial \varphi_1}{\partial x_1}, 0, \ldots, 0 \right) C_0^{-1} \| h \|_{L^2(Q)}^{-1}, \]

where $(\partial \varphi_1)/(\partial x_1)$ is the i-th component of f. Then $f \in L^2(Q)^n$ with $\text{div} \ f = 0$ and $\| f \|_{L^2(Q)^n} \leq 1$ by (4.2).

Let $\psi_0 \in C^\infty_0(\mathbb{R}^n)$ such that

\[\psi_0 = \begin{cases} 1 & \text{on } [-1, 1]^n; \\ 0 & \text{outside } [-2, 2]^n. \end{cases} \]

Define

\[e = \gamma C_0 |Q|^{-1/2} \nabla ((x_i - x_i^0) \psi_Q(x)), \quad 1 \leq i \leq n, \]
where $\psi_Q(x) = \psi_0 \left((x - x^0) / (l(Q) / 2) \right)$, $x^0 = (x_1^0, \ldots, x_n^0)$ and $l(Q)$ denote the centre and the side-length of the cube Q, $\gamma > 0$ is a normalisation constant (independent of x^0 and $l(Q)$) so that $\|e\|_{L^2(Q)^n} \leq 1$. It is obvious that $e \in C_0^\infty(2Q)$ and $e = \gamma C_0 |Q|^{-1/2} \varepsilon_i$ on Q, where $\varepsilon_i = (0, \ldots, 0, 1, 0, \ldots, 0)$, 1 is the i-th component of ε_i. From the construction of e and f, we get\[e \cdot f = \gamma |Q|^{-1/2} \|h\|_{L^2(Q)}^{-1} \frac{\partial \varphi_1}{\partial x_1} \text{ on } Q \]and (4.4) is proved. \[\square \]

NOTE. It should be added that at the time the paper was finished, the author was unfortunately unaware of a similar but unpublished work [3] (with different proof). Thanks go to Galia Dafni (Department of Mathematics & Statistics, Concordia University, Canada) for informing us her paper with Chang and Sadosky.

REFERENCES