汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
Quasiconformal mapping, Gromov hyperbolicity and Gehring-Hayman inequality(No. 521)
日期: 2022-06-08      信息来源:      点击数:

走向现代数学学术报告 - 黄曼子教授(No. 521)

报告题目:Quasiconformal mapping, Gromov   hyperbolicity and Gehring-Hayman inequality

报告人:黄曼子 教授 (湖南师范大学)

报告时间:2022年5月28日,10:00

报告地点:学术报告厅(工西416)

报告摘要:In this talk, we discuss the geomeytric properties of Gromov hyperbolic John domains in  Banach sapces. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is the cigar condition of the quasihyperbolic geodesic. The third is the Gehring-Hayman property of the quasihyperbolic geodesic. Also, the implication from the separation property to the Gehring-Hayman inequality is also discussed. At last, we get that every Gromov hyperbolic John domain in Banach spaces is inner uniform, which give a positive answer to an open problem proposed by Vaisala in 2004.

报告人简介:黄曼子,博士,教授,湖南省青年骨干教师。研究领域为拟共形映射和几何函数论,解决了拟共形映射创始人Vaisala等的相关公开问题和猜测5个,部分研究实现了有限维空间到无限维空间的突破,在Adv. Math., Math. Ann.等刊物发表论文30多篇。

广东省汕头市大学路243号,汕头大学数学系 515063,Email:math@stu.edu.cn

Copyright 2003-2022 汕头大学数学系