汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
Normalized solutions of L^2-supercritical NLS equations on metric graphs
日期: 2024-12-05      信息来源:      点击数:

走向现代数学学术报告 - 常小军教授(No. 754)

题目:Normalized solutions of L^2-supercritical NLS equations on metric graphs

报告人:常小军 教授(东北师范大学)

时间:2024年12月13日 9:00

腾讯会议ID:132-389-780

报告摘要:In this talk, we are concerned with the existence of non-trivial bound states of prescribed mass for the $L^2$-supercritical nonlinear Schrodinger equation on metric graphs. In recent years, significant progress has been made regarding normalized solutions in the $L^2$-subcritical or critical case. However, the $L^2$-supercritical NLSE on metric graphs was essentially untouched. We will present some existence results on mountain pass type normalized solutions in the $L^2$-supercritical regime for NLSE on metric graphs. These results are derived from a new minimax theorem with Morse index information for constrained functionals, along with a blow-up analysis of bound states with prescribed mass and bounded Morse index.

报告人简介:常小军,东北师范大学教授,博士生导师,美国《数学评论》评论员。2009年6月博士毕业于吉林大学应用数学专业,2015年1月起任东北师范大学数学与统计学院教授,主要从事非线性泛函分析及其应用的研究,已在《Annales de l’Institut Henri Poincaré, Analyse Non Linéaire.》, 《Trans. Amer. Math.Soc.》,《J. Differential Equations》,《Nonlinearity》等国际专业期刊上发表论文三十余篇,主持国家自然科学基金面上项目3项(1项在研)与省部级项目多项。

广东省汕头市翠峰路5号,汕头大学数学系 515821,Email:math@stu.edu.cn

Copyright 2003-2023 汕头大学数学系