走向现代数学学术报告 - 常小军教授(No. 754)
题目:Normalized solutions of L^2-supercritical NLS equations on metric graphs
报告人:常小军 教授(东北师范大学)
时间:2024年12月13日 9:00
腾讯会议ID:132-389-780
报告摘要:In this talk, we are concerned with the existence of non-trivial bound states of prescribed mass for the $L^2$-supercritical nonlinear Schrodinger equation on metric graphs. In recent years, significant progress has been made regarding normalized solutions in the $L^2$-subcritical or critical case. However, the $L^2$-supercritical NLSE on metric graphs was essentially untouched. We will present some existence results on mountain pass type normalized solutions in the $L^2$-supercritical regime for NLSE on metric graphs. These results are derived from a new minimax theorem with Morse index information for constrained functionals, along with a blow-up analysis of bound states with prescribed mass and bounded Morse index.
报告人简介:常小军,东北师范大学教授,博士生导师,美国《数学评论》评论员。2009年6月博士毕业于吉林大学应用数学专业,2015年1月起任东北师范大学数学与统计学院教授,主要从事非线性泛函分析及其应用的研究,已在《Annales de l’Institut Henri Poincaré, Analyse Non Linéaire.》, 《Trans. Amer. Math.Soc.》,《J. Differential Equations》,《Nonlinearity》等国际专业期刊上发表论文三十余篇,主持国家自然科学基金面上项目3项(1项在研)与省部级项目多项。