走向现代数学学术报告 - 张建军教授(No. 827)
报告题目:On nodal solutions with a prescribed number of nodes for a Kirchhoff-type problem
报告时间:2025年11月1日 8:30
报告地点:东海岸校区-D实209
报 告 人:张建军 教授(重庆交通大学)
邀 请 人:王大斌 教授
报告摘要:In this talk, we are concerned with the existence and asymptotic behavior of multiple radial sign-changing solutions with the nodal characterization for a Kirchhoff-type problem involving the nonlinearity $|u|^{p-2}u (3<p<4)$ in $\mathbb{R}^{3}$. By introducing a novel Nehari manifold for the auxiliary system of the equations, we show that, for any positive integer $k$, the problem has a sign-changing solution $u^{b}_{k}$ changing signs exactly $k$ times. Furthermore, the energy of $u^{b}_{k}$ is strictly increasing in $k$, as well as some asymptotic behaviors of $u^{b}_{k}$ are obtained. Our result is a complement of [Deng Y, Peng S, Shuai W, J. Funct. Anal., 269(2015), 3500-3527], where the case $2<p<4$ was left open. This talk is based on a joint work with Haining Fan and Marco Squassina.
报告人简介:张建军,重庆交通大学数学与统计学院教授,重庆市数学会副理事长,贵州大学和重庆交通大学博士生导师。2001年本科毕业于中国矿业大学数学系,2012年于清华大学数学科学系获博士学位,2018年获得意大利副教授国家资格认证,主持国家自然科学基金3项和意大利伦巴第研究员基金(Global ERC)1项。在非线性薛定谔方程的半经典状态和规范化解的研究等方面取得了一些结果,在JMPA,CPDE,SIAM, JLMS, CVPDE, JDE, Nonlinearity等刊物上发表多篇论文。