汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
The maximal estimates and point-wise convergence for Schrodinger operators with potentials
日期: 2025-11-24      信息来源:      点击数:

走向现代数学学术报告 - 邓清泉副教授(No. 880)

报告题目:The maximal estimates and point-wise convergence for Schrodinger operators with potentials

报告时间:2025年11月25日 15:00

腾讯会议ID:994-323-848

报 告 人:邓清泉 副教授(华中师范大学)

邀 请 人:于海峡 副教授

报告摘要:In this work, we focus on the maximal estimates and point-wise convergence for Schrodinger group e^{itH} with potentials in dimension one, where H=-\Delta+V. Under some assumptions on potential V, by using the distorted Fourier transform, as well as the function spaces associated to operators, we prove that the maximal operator of e^{itH} is bounded from H^s to L^q, as well as the point-wise convergence for initial data f\in H^s.

报告人简介:邓清泉,华中师范大学副教授、博士生导师。主要从事调和分析Hardy空间理论、高阶薛定谔算子热核估计以及非线性薛定谔方程孤立波动力性质等研究,在 Adv.Math. Comm. Math. Phys. J. Funct. Anal.,Indiana Univ. Math. J. 以及 SIAM J. Math. Anal.等SCI期刊上发表多篇论文。先后主持博士后基金、国家自然科学基金青年项目、国家自然科学基金面上项目与湖北省自然科学基金,参与国家自然科学基金重点项目。

广东省汕头市翠峰路5号,汕头大学数学系 515821,Email:math@stu.edu.cn

Copyright 2003-2023 汕头大学数学系