走向现代数学学术报告 - 李星宇博士(No. 888)
报告题目:A Preliminary Study on Parameter Spaces for Solutions of Differential Equations in weighted Bergman Spaces
报告时间:2025年12月10日 10:00
报告地点:东海岸校区-D实315
报 告 人:李星宇 博士 (曼彻斯特大学)
邀 请 人:温智涛 教授
报告摘要:This talk presents a novel operator-theoretic framework for constructing and analyzing finite-order entire solutions to linear differential equations with exponential polynomial coefficients. The core of our approach is to associate the differential equation with a parameterized Volterra-type integral operator. We give such solutions in the form of Liouville-Neumann series, which is a typical representation of Resolvent Formalism, named by David Hilbert. In addition, we will introduce the preliminary relationship between chaotic phenomenon and parameter-ε space from a Dynamic aspect.
报告人简介:李星宇,曼彻斯特大学博士后。2025年博士毕业于汕头大学数学系。主要从事复微分方程与全纯动力系统。成果发表在《Journal of the differential equations》。