走向现代数学学术报告 - 胡晓文副教授(No. 890)
报告题目:On the algebraic K-theory over truncated Witt vectors
报告时间:2025年12月10日 16:30
报告地点:东海岸校区-D实209
报 告 人:胡晓文 副教授(大湾区大学)
邀 请 人:陈哲 副教授
报告摘要:Around 2013, Bloch, Esnault, and Kerz proposed a K-theoretic approach to the $p$-adic variational Hodge conjecture (pVHC), and showed a formal version of this conjecture. A crucial ingredient in their proof is the computation of the relative continuous K-theory of a smooth scheme over the ring of Witt vectors of a perfect field of characteristic $p$. The continuous K-theory is defined as the limit of the relative K-theory over the truncated Witt vectors. It is therefore desirable to know this relative K-theory exactly over the truncated Witt vectors of every length. In this talk, I will recall the background of pVHC and sketch a computation of this relative K-theory in low degrees compared to the $p$. Our results recover the above-mentioned of Bloch, Esnault, and Kerz, and lead to a reasonable definition of infinitesimal motivic complexes, and imply an infinitesimal version of the pVHC.
报告人简介:胡晓文,大湾区大学副教授。博士毕业于清华大学,主要研究镜像对称里的计数几何问题,包括Gromov-Witten不变量、希尔伯特概型等,近期研究兴趣为代数K理论。相关成果发表在 Adv Math、IMRN、Math Ann、Sci China Math 等期刊。