汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
走向现代数学-系列学术报告(No.438)(钟昌龙 助理教授)
日期: 2021-06-16      信息来源:      点击数:
报告题目:Schubert varieties, Kazhdan-Lusztig basis, and Hyperbolic cohomology 

报告人:钟昌龙 助理教授(美国纽约州立大学)

报告时间:6月16日上午10-11点

报告链接:https://meeting.tencent.com/s/SGHjVbQOPsGg

                      腾讯会议ID:185 474 753

摘要:Kazhdan-Lusztig basis is defined in Hecke algebra and is closely related with representations of algebraic groups. It has many interesting properties, one of which is the positivity of the coefficients. Such positivity is proved by Lusztig by using intersection cohomology of Schubert varieties. In this talk I am going to talk about another relation between Schubert varieties and Kazhdan-Lusztig basis, in terms of hyperbolic cohomology, which is some theory generalized from Chow group and Grothendieck group. 

报告人简介:钟昌龙, 美国纽约州立大学奥尔伯尼分校助理教授. 2012年博士毕业于美国州立大学, 研究方向为几何表示论和Schubert Calculus, 学术成果发表于, , , 等国际权威期刊。

广东省汕头市翠峰路5号,汕头大学数学系 515821,Email:math@stu.edu.cn

Copyright 2003-2023 汕头大学数学系