报告题目:Iwasawa theory over three-dimensional $p$-adic Lie extensions
报告人:秦超 博士(中山大学)
报告时间:2021年12月10日 15:00
报告地点:工西416
报告摘要:Iwasawa theory is a powerful tool which describes the mysterious relationship between arithmetic objects and the special values of L-functions. A precise form of this relationship is neatly encoded in the so-called “Iwasawa Main Conjecture”. In this talk, I will introduce Main Conjecture in the non-commutative setting. Then I will describe the K_1(Z_p[[G_∞]]) and its localizations using p-adic congruences, where G_∞ is any p-adic Lie group with dimension 3.
报告人简介:秦超,2019年毕业于新西兰怀卡托大学(University of Waikato),现为中山大学博士后,主持国家自然科学基金1项。其主要研究方向是数数论,特别是岩泽理论及BSD猜想相关课题。其主要工作是利用Burns-Kato方法以及p-adic congruences在高维p阶李扩张上证明新的Iwasawa主猜想。