汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
走向现代数学-系列学术报告(No. 473)(魏华影 副教授)
日期: 2021-12-06      信息来源:      点击数:
题目:BMO embeddings, chord-arc curves, and Riemann mapping parametrization

报告人:魏华影 副教授 (江苏师范大学)

时间:2021年12月8日 15:00

报告方式:腾讯会议号:429-546-048

摘要:We consider the space of chord-arc curves on the plane passing through the infinity with their parametrization f on the real line, and embed this space into the product of the BMO Teichmuller spaces.

The fundamental theorem we prove about this representation is that log f' also gives a biholomorphic homeomorphism into the complex Banach space of BMO functions. Using these two equivalent complex structures,we develop a clear exposition on the analytic dependence of involved mappings between certain subspaces. Especially, we examine the parametrization of a chord-arc curve by using the Riemann mapping and its dependence on the arc-length parametrization. As a consequence, we solve completely a conjecture of Katznelson, Nag, and Sullivan in 1990 by showing that this dependence is not continuous, which is our main result. This is a joint work with Katsuhiko Matsuzaki. 

 报告人简介:魏华影,江苏师范大学数学与统计学院副教授,研究方向为Teichmuller theory. 主持国家自然科学基金青年科学基金和江苏省自然科学基金等项目, 论文发表于Adv. Math,Anal. Math. Phys., Bull. Lond. Math. Soc.,Sci. China Math,Pacific J. Math等国内外权威期刊。

 

广东省汕头市翠峰路5号,汕头大学数学系 515821,Email:math@stu.edu.cn

Copyright 2003-2023 汕头大学数学系