走向现代数学学术报告-邵国宽副教授 (No. 539)
报告题目:G-equivariant Szeg\H{o} kernel asymptotics on CR manifolds
报告人:邵国宽 副教授(中山大学珠海校区)
报告时间:2022年11月1日15:00
腾讯会议号:640-940-957
会议链接:https://meeting.tencent.com/dm/n7AZ8WG1AFce
报告摘要:Let $X$ be a compact connected strongly pseudoconvex CR manifold. Assume that $X$ admits a connected compact Lie group $G$ action. Under certain natural assumptions on $G$, we show that the G-equivariant Szeg\H{o} kernel is a complex Fourier integral operator, smoothing away from $\mu^{-1}(0)$, where $\mu$ denotes the CR moment map. By applying our result to the case when X also admits a transversal CR $S^1$ action, we deduce an asymptotic expansion for the $m$-th Fourier component of the G-equivariant Szeg\H{o} kernel as $m\to\infty$ and compute the coefficients of the first two lower order terms. This talk is based on joint work with Chin-Yu Hsiao and Rung-Tzung Huang.
报告人简介:邵国宽,2012年本科毕业于中科大,2016年博士毕业于巴黎第十一大学,曾在中国台湾“中央”研究院数学所做博士后,现任中山大学数学学院(珠海)副教授,从事多复变与复几何、CR几何方向的研究,特别是带有李群作用的流形上的Bergman核与Szego核相关问题。