走向现代数学学术报告 - 李福义教授(No. 582)
报告题目:Infinitely many nodal solutions of Kirchhoff-type equations with asymptotically cubic nonlinearity without oddness hypothesis
报告人:李福义教授(山西大学)
报告时间:2023年3月20日14:00
腾讯会议ID:418-564-609
报告摘要:In this talk, I will present the existence and asymptotic behavior of infinitely many nodal solutions of Kirchhoff-type equations with an asymptotically cubic nonlinear term without oddness assumptions. By using variational methods and convex analysis techniques, the question of the existence of infinitely many solutions to some elliptic nonlinear equations is addressed without invoking oddness assumptions. At the same time, we propose a method to overcome the difficulties caused by the complicated competition between the nonlocal terms and the asymptotically cubic nonlinearity. The results presented here were joint work with Cui Zhang and Zhanping Liang.
个人简介:李福义,山西大学二级教授,博士生导师。山西省教学名师,山西省优秀科技工作者。山西省数学会副理事长,山西省工业与应用数学学会副理事长。2018-2022年教育部高等学校数学类专业教学指导委员会委员。山西省高等学校教学指导委员会数学类专业教学指导委员会(含公共课教学)副主任委员。从事非线性泛函分析,非线性微分方程研究。基础数学学科方向带头人。曾任数学科学学院院长。主持国家自然科学基金面上基金4项。获山西省科学技术奖(自然科学类)二等奖(2019年),三等奖(2010年)各一次,山西省科技进步(理论)二等奖(1998年)一次。