走向现代数学学术报告 - 周小敏副教授(No. 629)
报告题目:Measure complexity and Rigid systems
报 告 人:周小敏 副教授(华中科技大学)
报告时间:2023年6月7日(星期三)10:00
地点:学术报告厅(工西416)
摘要:In this paper we introduce two metrics: the max metric and the mean metric . We give an equivalent characterization of rigid measure preserving systems by the two metrics. It turns out that an invariant measure on a topological dynamical system has bounded complexity with respect to the max metric if and only if it has bounded complexity with respect to the mean metric if and only if the dynamical system is rigid. We also obtain computation formulas of the measure-theoretic entropy of an ergodic measure preserving system (resp. the topological entropy of a topological dynamical system) by the two metrics.
报告人简介:周小敏,华中科技大学副教授,主要研究方向是动力系统复杂性理论等等。2012年9月~2017年6月在中国科学技术大学攻读基础数学方向博士学位,2017年8月~2019年8月在华中科技大学数学与统计学院做博士后工作。主持国家自然科学基金青年项目(已结题)和面上项目。研究成果主要发表在Discrete and Continuous Dynamical Systems、Contemporary Mathematics、Ergodic Theory and Dynamical Systems、Proc. Amer. Math. Soc.、J. Dynam. Differential Equations、J. Differential Equations等。