汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
Measure complexity and Rigid systems
日期: 2023-06-06      信息来源:      点击数:

走向现代数学学术报告 - 周小敏副教授(No. 629)

报告题目:Measure complexity and Rigid systems

人:周小敏 副教授(华中科技大学)

报告时间:202367日(星期三)10:00

地点:学术报告厅(工西416

摘要:In this paper we introduce two metrics: the max metric and the mean metric . We give an equivalent characterization of rigid measure preserving systems by the two metrics. It turns out that an invariant measure on a topological dynamical system has bounded complexity with respect to the max metric if and only if it has bounded complexity with respect to the mean metric if and only if the dynamical system is rigid. We also obtain computation formulas of the measure-theoretic entropy of an ergodic measure preserving system (resp. the topological entropy of a topological dynamical system) by the two metrics.

报告人简介:周小敏,华中科技大学副教授,主要研究方向是动力系统复杂性理论等等。20129月~20176月在中国科学技术大学攻读基础数学方向博士学位,20178月~20198月在华中科技大学数学与统计学院做博士后工作。主持国家自然科学基金青年项目(已结题)和面上项目。研究成果主要发表在Discrete and Continuous Dynamical SystemsContemporary MathematicsErgodic Theory and Dynamical SystemsProc. Amer. Math. Soc.J. Dynam. Differential EquationsJ. Differential Equations等。

广东省汕头市翠峰路5号,汕头大学数学系 515821,Email:math@stu.edu.cn

Copyright 2003-2023 汕头大学数学系