汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
Sign-changing solution for an overdetermined elliptic problem on unbounded
日期: 2023-11-16      信息来源:      点击数:

走向现代数学学术报告 - 代国伟教授(No. 665)

报告题目:Sign-changing solution for an overdetermined elliptic problem on unbounded

报告人:代国伟 教授(大连理工大学)

报告时间:2023年11月17日,9:00

腾讯会议ID:958807677

报告摘要:We prove the existence of two smooth families of unbounded domains in $\mathbb{R}^{N+1}$ with $N\geq1$ such that\begin{equation}-\Delta u=\lambda u\,\, \text{in}\,\,\Omega,\,\,u=0,\,\,\partial_\nuu=\text{const}\,\,\text{on}\,\,\partial\Omega\nonumber\end{equation}admits a sign-changing solution. The domains bifurcate from the straight cylinder $B_1\times\mathbb{R}$, where $B_1$ is the unit ball in $\mathbb{R}^N$. These results can be regarded as counterexamples to the Berenstein conjecture on unbounded domain. Unlike most previous papers in this direction, a very delicate issue here is that there may be two-dimensional kernel space at some bifurcation point. Thus a Crandall-Rabinowitz type bifurcation theorem from high-dimensional kernel space is also established to achieve the goal.

报告人简介:代国伟,大连理工大学教授、博士生导师,主持完成国家自然科学基金3项,在研面上基金1项。获省自然科学奖二等奖1次,高校科技进步奖一等奖3次。研究方向是分歧理论及应用,建立了连通分支逼近法,研究了特征值问题的谱理论,以及非线性椭圆方程解集的全局结构,在《Indiana Univ. Math. J.》、《J. Funct. Anal.》、《Calc. Var. Partial Differential Equations》、《J. Differential Equations》、《Nonlinearity》等学术期刊上发表学术论文100余篇,引用1000余次。在科学出版社出版学术专著1部。

广东省汕头市翠峰路5号,汕头大学数学系 515821,Email:math@stu.edu.cn

Copyright 2003-2023 汕头大学数学系