汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
Gradient estimate and geometric functional for the p-Laplace operator on the graph
日期: 2024-05-11      信息来源:      点击数:

走向现代数学学术报告 - 王林峰教授(No. 707)

题目:Gradient estimate and geometric functional for the p-Laplace operator on the graph

报告人:王林峰 教授(南通大学)

时间:2024年5月18日(周六) 10:00

地点:东海岸校区-D实209

摘要:Let G(V,E) be a connected finite graph. In this report we define p-curvature conditions on G. We show that p-Bakry-Émery curvature condition holds on G for any p≥2. We establish Li-Yau gradient estimate for the p-Laplace parabolic equation under the p-curvature condition, and then derive evolving inequalities for some geometric functionals along the p-Laplace parabolic equation, based on the gradient estimate.

报告人简介:南通大学数学与统计学院,教授,硕士生导师。主要从事几何分析、图论的学习和研究,迄今在 J. Funct. Anal.、J. Differ. Equations、Comm. Anal. Geom.、Asian J. Math.、J. Geom. Anal.、Math. Z.、Pacific J. Math.、Sci. China Math.等杂志上发表论文30余篇。

广东省汕头市翠峰路5号,汕头大学数学系 515821,Email:math@stu.edu.cn

Copyright 2003-2023 汕头大学数学系