汕头大学数学系

学术报告

当前位置: 首页 >> 科学研究 >> 学术报告 >> 正文
On the abstract representations of infinite reductive algebraic groups
日期: 2024-06-18      信息来源:      点击数:

走向现代数学学术报告 - 陈晓煜副教授(No. 725)

报告题目:On the abstract representations of infinite reductive algebraic groups

报告人:陈晓煜 副教授(上海师范大学)

报告时间:2024年6月28日 午14:30

腾讯会议ID:168-647-023腾讯会议密码开始前公布)

摘要:Let G be a connected reductive algebraic group defined over F_q and B be a Borel subgroup of G. Let k be a field and \theta be a character of B. Define M(\theta)=G\otimes_B \theta. This induced module is the natural object of study. In this talk, we give the recent developments on the structure of M(\theta). Specifically, we give a necessary and sufficient condition for M(\theta) being finite length (in which case we give composition factors), and some partial results on the structure of M(\theta) with infinite length. We also give a classification and construction of simple G-modules with B-stable line. There are partially joint work with Junbin Dong.

报告人简介:陈晓煜是上海师范大学数理学院副教授,研究方向为代数群与量子群,主要研究兴趣包括:简约代数群的抽象表示的分类与结构问题,双参数量子群PBW Lyndon基,代数群Weyl模的张量积分解,量子超群的BLM实现。

广东省汕头市翠峰路5号,汕头大学数学系 515821,Email:math@stu.edu.cn

Copyright 2003-2023 汕头大学数学系