走向现代数学学术报告 -罗晓芳博士生(No. 730)
报告题目:Mean Hausdorff dimension of some infinite dimensional fractals on Z^k-actions
报 告 人:罗晓芳 博士生(中山大学)
报告时间:2024年7月17日(星期三)10:30
地点:东海岸校区-D实209
摘要:In this talk we will introduce infinite dimensional homogeneous sets, self-similar sets and Bedford-McMullen carpet of $\mathbb{Z}^k$-actions dynamical systems. We then proceed to calculate their respective metric mean dimension and mean Hausdorff dimension of them respectively. This result represents an extension of the work originally conducted by Tsukamoto, transitioning from $\mathbb{Z}$-action to $\mathbb{Z}^k$-actions.
报告人简介:罗晓芳,中山大学基础数学专业博士研究生,主要研究方向是拓扑动力系统与遍历理论,在Qual. Theory Dyn. Syst.、Acta Math. Sin., Engl. Ser.期刊发表论文多篇。