走向现代数学学术报告 - 代丹副教授(No. 736)
题目:Asymptotics and total integrals of the $\rm{P_{I}^{2}}$ tritronqu\'{e}e solution and its Hamiltonian
报告人:代丹 副教授(香港城市大学)
时间:2024年9月26日 10:00
腾讯会议ID:320-902-342
摘要:We study the tritronqu\'{e}e solution $u(x,t)$ of the $\mathrm{P}_{\rm I}^{2}$ equation, the second member of the Painlev\'{e} I hierarchy. This particular solution is also known as the Gurevich-Pitaevskii solution of the KdV equation. It is pole-free on the real line and has various applications in mathematical physics. We obtain a full asymptotic expansion of $u(x,t)$ as $x\to\pm \infty$, uniformly for the parameter $t$ in a large interval. Based on this result, we successfully derive the total integrals of $u(x,t)$ and the associated Hamiltonian with respect to $x \in \mathbb{R}$. Surprisingly, although $u(x,t)$ exhibits significant differences between $t>0$ and $t<0$, both integrals equal zero for all $t$.
报告人简介:代丹,香港城市大学副教授,博士生导师。主要研究方向为Riemann-Hilbert方法与渐近分析,正交多项式与特殊函数,可积系统,随机矩阵理论等。在随机矩阵特征值分布普适性猜想等领域取得了重要研究成果。相关研究成果发表在Advances in Mathematics,Communications in Mathematical Physics,SIAM Journal on Mathematical Analysis等国际重要学术期刊。主持香港研究资助局多项研究项目。