走向现代数学学术报告 - 王超副研究员(No. 742)
题目:Self-supervised Representations for Spectral and Temporal Imaging
报告人:王超 副研究员(南方科技大学)
时间:2024年11月8日 10:00
地点:东海岸校区-D实209
摘要:Spectral and temporal imaging problems such as hyperspectral imaging and dynamic medical image reconstruction have been widely encountered in machine learning and computer vision. These areas often encounter challenges associated with high dimensionality and limited ground truth data. In this talk, I will discuss several self-supervised learning strategies that apply to various applications, from remote sensing to computational imaging. The proposed approaches integrate the concept of low-rank matrix factorization, leverage continuity through neural representation, and employ variational techniques from a model-based approach. Extensive experimental results reveal that these self-supervised learning techniques perform competitively, often outperforming traditional supervised learning methods in various real-world imaging scenarios.
个人简介:王超,南方科技大学统计与数据科学系副研究员,博导,2018年毕业于香港中文大学数学系,在美国德州大学和加州大学共积累近三年海外博士后工作经验。其研究方向主要为图像处理、科学计算与交叉学科的数据科学,并在理论和算法上取得了一些创新性的研究成果。在本领域期刊SIAM系列、IEEE汇刊等杂志及学术会议发表学术论文三十余篇。在2022年全球计算机视觉(CVPR)的研讨会获得最佳论文奖,在2021年获深圳市鹏城孔雀计划特聘岗位C类,在2017年获得第十五届中国工业与应用数学学会(CSIAM)年会最佳论文奖。主持国自然青年基金、广东省面上基金以及深圳市稳定支持面上项目,以课题负责人或核心成员参与国家重点研发项目、香港研资局科研基金项目以及深圳重点项目。