走向现代数学学术报告 - 谢华友博士生(No. 758)
题目:Ces\`{a}ro-type operators on Bergman-Morrey spaces and Dirichlet-Morrey spaces
报告人:谢华友 博士生(中山大学)
时间:2024年12月18日 10:00
地点:东海岸校区 - D实209
摘要:In this paper, we will show the Carleson measure characterizations for the boundedness and compactness of Ces\`{a}ro-type operator $$\mathcal{C}_{\mu}(f)(z)=\sum^{\infty}_{n=0}\left( \int_{[0,1)}t^nd\mu(t)\right) \left(\sum^{n}_{k=0}a_k \right)z^n, \quad z\in \mathbb{D},$$ acting on a number of important analytic function spaces on $\mathbb{D}$, where $\mu$ is a positive finite Borel measure. The function spaces are some newly-appeared analytic function spaces (e.g., Bergman-Morrey spaces $A^{p,\lambda}$ and Dirichlet-Morrey spaces $\mathcal{D}_p^{\lambda}$)
报告人简介:谢华友,中山大学基础数学专业博士研究生,主要研究方向是泛函分析和复分析中的函数空间算子理论,在Proc. Amer. Math. Soc.;J. Math. Anal. Appl.; Canad. Math. Bull.; Rocky Mountain J. Math. 期刊发表论文多篇。